Pure Math 30 :
 TROGONOMETRY O

 Six Trigonometric Ratios

TRIGONOMETRY LESSON 3

PART I FINDING QUADRANTS

Look at the angle shown in the diagram to the right. Is it possible to predict if $\sin \theta$ or $\cos \theta$ will be positive or negative?
 The answer is yes, and you can predict the sign by knowing which quadrant the terminal arm is located in.

Memorize the following rules:

$\cos \theta$ is positive in quadrants I \& IV (where x is positive.)

$\cos \theta$ is negative in quadrants II \& III (where x is negative.)

 quadrants I \& II (where y is positive.)

$\tan \theta$ is positive in
quadrants I \& III (x \& y have the same signs.)

$\sin \theta$ is negative in quadrants III \& IV (where y is negative.)

$\tan \theta$ is negative in quadrants II \& IV (x \& y have different signs.)

The signs of the reciprocal trig ratios can be determined by remembering the following:
$\sec \theta$ follows the same pattern as $\cos \theta$
$\csc \theta$ follows the same pattern as $\sin \theta$
$\cot \theta$ follows the same pattern as $\tan \theta$

TRIGONOMETRY LESSON 3 PART I FINDING QUADRANTS

Example 1: $\sin \theta<0 \& \cos \theta>0$. What quadrant is the angle in?
$\sin \theta$ is negative in these quadrants

$\cos \theta$ is positive in these quadrants

We have overlap in quadrant IV, so that is where the angle is.

Example 2: $\csc \theta>0 \& \cot \theta=-\frac{\sqrt{3}}{3}$. What quadrant is the angle in?
$\csc \theta$ follows the same pattern as $\sin \theta$, and $\sin \theta$ is positive in these quadrants

$\cot \theta$ follows the same pattern as $\tan \theta$, and $\tan \theta$ is negative in these quadrants

Even though an actual value is given for $\cot \theta$, it is not needed if we only want to find the quadrant.

We do need the negative though, since that indicates $\cot \theta<0$.

We have overlap in quadrant II, so that is where the angle is.

TRIGONOMETRY LESSON 3
 PART 1 FINDING QUADIRANTS

Questions: For each of the following, state what quadrant the angle is in:

1) $\sin \theta>0 \& \cos \theta<0$

2) $\sin \theta<0 \& \sec \theta>0$
3) $\sin \theta>0$ \& $\tan \theta>0$
4) $\csc \theta>0 \& \tan \theta>0$

5) $\cot \theta<0 \& \sec \theta>0$

6) $\cos \theta=-0.2 \& \cot \theta<0$
7) $\cot \theta>0 \& \sin \theta<0$
8) $\cot \theta<0 \& \csc \theta=\frac{\sqrt{3}}{3}$

9) $\csc \theta<0 \& \sec \theta<0$

10) $\cos \theta>0 \& \tan \theta<0$

Answers:

1) II
2) I
3) IV
4) II
5) II

C: $\cos \theta$ (and $\sec \theta$) is positive, everything else is negative.
A: all are positive
6) IV
$\mathbf{S}: \sin \theta($ and $\csc \theta)$ is positive, everything else is negative.
7) IV
8) I
9) II
10) III
11) II
12) III

TRIGONOMETRY LESSON 3 PART II SIX TRIGONOMETIRIC RATIOS

The six trigonometric ratios are shown to the right.
Given a point, it is possible to evaluate all six ratios by creating a triangle and determining the lengths of the three sides.

$$
\begin{array}{ll}
\sin \theta=\frac{\text { opposite }}{\text { hypotenuse }} & \csc \theta=\frac{\text { hypotenuse }}{\text { opposite }} \\
\cos \theta=\frac{\text { adjacent }}{\text { hypotenuse }} & \sec \theta=\frac{\text { hypotenuse }}{\text { adjacent }} \\
\tan \theta=\frac{\text { opposite }}{\text { adjacent }} & \cot \theta=\frac{\text { adjacent }}{\text { opposite }}
\end{array}
$$

TRIGONOMETRY LESSON 3 PART " SIX TRIGONOMETRIC RATIOS

Example 2: If $\csc \theta=-\frac{13}{5}$ and $\cos \theta<0$, find the six trigonometric ratios.

1) First find the quadrant the angle is in:
$\csc \theta$ follows the same pattern as $\sin \theta$, and $\sin \theta$ is negative in these quadrants

$\cos \theta$ is negative in these quadrants

Overlap in quadrant III.
2) Draw the triangle, and find the unknown side using Pythagoras:

$$
\begin{aligned}
& a^{2}+b^{2}=c^{2} \\
& (a)^{2}+(-5)^{2}=13^{2} \\
& a^{2}+25=169 \\
& a^{2}=144 \\
& a=12
\end{aligned}
$$

3) Now find the six trigonometric ratios.
$\sin \theta=\frac{-5}{13}$ $\csc \theta=\frac{13}{-5}$
$\cos \theta=\frac{-12}{13}$
$\sec \theta=\frac{13}{-12}$
$\tan \theta=\frac{-5}{-12}=\frac{5}{12} \quad \cot \theta=\frac{12}{5}$

Even though the answer of 12 from Pythagoras is positive, you must include a minus sign since the number is being placed on the negative x-axis. Remember to label all triangle sides with the correct sign!

TRIGONOMETRY LESSON 3 PART || SIX TRIGONOMETRIC RATIOS

Questions: For each of the following questions, state the six trigonometric ratios:

1) $P(\sqrt{3},-1)$
*Don't forget to rationalize the denominator when there is a radical on the bottom!
2) $P(-2, \sqrt{5})$
3) $\csc \theta=-\frac{5}{4}$ \& $\cot \theta>0$
4) $P(-2,-3)$
5) $\cot \theta=\frac{2}{5} \quad \& \csc \theta<0$
6) $\cos \theta=-\frac{1}{3} \quad \& \quad \sin \theta>0$
7) $\sin \theta=\frac{1}{2} \quad \& \quad \sec \theta>0$
8) $\sec \theta=-\frac{5}{2}$ \& $\tan \theta<0$
9) $\tan \theta=\sqrt{3} \quad \& \cos \theta<0$

TRIGONOMETRY LESSON 3
 PART II SIX TRIGONOMETIRIC RATIOS

TRIGONOMETRY LESSON 3 PART II SIX TRIGONOMETIRIC RATIOS

7) The angle is in quadrant III
$\sin \theta=\frac{-5}{\sqrt{29}}=\frac{-5 \sqrt{29}}{29}$
$\csc \theta=\frac{\sqrt{29}}{-5}$
$\cos \theta=\frac{-2}{\sqrt{29}}$
$\sec \theta=\frac{-2 \sqrt{29}}{29}$
$\tan \theta=\frac{-5}{-2}=\frac{5}{2}$
$\cot \theta=\frac{2}{5}$
8) The angle is in quadrant I
$\sin \theta=\frac{1}{2}$
$\csc \theta=2$
$\cos \theta=\frac{\sqrt{3}}{2}$
$\sec \theta=\frac{2}{\sqrt{3}}=\frac{2 \sqrt{3}}{3}$
$\tan \theta=\frac{1}{\sqrt{3}}=\frac{\sqrt{3}}{3}$
$\cot \theta=\frac{\sqrt{3}}{1}=\sqrt{3}$
9) The angle is in quadrant III

$$
\begin{array}{ll}
\sin \theta=\frac{-\sqrt{3}}{2} & \csc \theta=\frac{2}{-\sqrt{3}}=\frac{2 \sqrt{3}}{-3} \\
\cos \theta=\frac{-1}{2} & \sec \theta=-2 \\
\tan \theta=\frac{-\sqrt{3}}{-1}=\sqrt{3} & \cot \theta=\frac{-1}{-\sqrt{3}}=\frac{\sqrt{3}}{3}
\end{array}
$$

