

Trigonometry Lesson 2 Part One – The Unit Circle

www.puremath30.com

valuate each of the fo	llowing:	
1) $\sin\frac{5\pi}{4}$	16) $\cot^2 \frac{20\pi}{3}$	Express all fractions
?) sin180°	17) $\sec\left(-\frac{35\pi}{6}\right)$	with rationalized denominators.
b) $\cos(-240^{\circ})$	29π	
b) $\sec^2(-420^\circ)$	18) $\tan \frac{25\pi}{4}$	
$\operatorname{csc}\left(\frac{-7\pi}{6}\right)$	19) sec 0	
(i) $\cot\left(\frac{-10\pi}{3}\right)$	20) -csc1380°	
(13π)	21) $\cot(-10\pi)$	
$-\tan\left(\frac{1}{6}\right)$	22) $\tan \frac{13\pi}{4}$	
$\tan \frac{\pi}{2}$	$\mathbf{23)} - \sec\left(-\frac{4\pi}{3}\right)$	
$\csc\left(\frac{-3\pi}{4}\right)$	24) -tan 0	
O) $\tan \frac{7\pi}{6}$	25) $\cos \frac{11\pi}{6}$	
1) $\sec\left(\frac{-11\pi}{2}\right)$	26) $\sec \frac{5\pi}{3}$	
2) -sec180°	27) -csc180°	
3) cot 240°	28) $\cot \frac{\pi}{2}$	
$4) \csc\left(\frac{-5\pi}{4}\right)$	29) $\sin \frac{\pi}{3}$	
5) $\sec \frac{\pi}{\epsilon}$	30) $-\tan\frac{\pi}{3}$	

	Trigonometry Lesson Two Part I - The Unit Circle	
1) $-\frac{\sqrt{2}}{2}$	16) $\left(-\frac{\sqrt{3}}{3}\right)^2 = \frac{3}{9} = \frac{1}{3}$	
2) 0	17) $\frac{2\sqrt{3}}{3}$	
3) $-\frac{1}{2}$	18) 1	
4) 4	19) 1	
5) 2	20) $\frac{2\sqrt{3}}{3}$	
6) $-\frac{\sqrt{3}}{3}$	21) undefined	
7) $-\frac{\sqrt{3}}{3}$	22) 1	
8) undefined	23) 2	
9) −√2	24) 0	
10) $\frac{\sqrt{3}}{3}$	25) $\frac{\sqrt{3}}{2}$	
11) undefined	26) 2	
12) 1	27) undefined	
13) $\frac{\sqrt{3}}{3}$	28) 0	
14) √2	29) $\frac{\sqrt{3}}{2}$	
15) $\frac{2\sqrt{3}}{3}$	30) −√3	
	PURE MATH 30: EXPLAINED! www.puremath30.com	176

Trigonometry Lesson Two

Part II – Solving Basic Equations

In the last section, we were looking for the exact value when given an angle. In this section, we'll look for the angle(s) given the exact value.

Example 1: What is the solution to: $\sin\theta = -\frac{\sqrt{3}}{2}$ $(0 \le \theta \le 2\pi)$

To solve this, look for y-coordinates equal to $-\frac{\sqrt{3}}{2}$ on the unit circle and see what angles correspond to it. The solution is $\theta = \frac{4\pi}{3}$ and $\frac{5\pi}{3}$

Example 2: Where is $\sec\theta$ undefined? $(0 \le \theta \le 2\pi)$

We know that $\sec\theta = \frac{1}{\cos\theta}$, so $\sec\theta$ is undefined whenever the denominator becomes zero. $\cos\theta = 0$ when $\theta = \frac{\pi}{2}, \frac{3\pi}{2}$

In the previous two questions, we were given $(0 \le \theta \le 2\pi)$, which means we only need to go around the circle once. Most of the time, you will want the general solution, which includes all possible co-terminal angles.

www.puremath30.com

Trigonometry Lesson Two Part II – Solving Basic Equations

1) $\theta = \frac{\pi}{3}, \frac{2\pi}{3}$

2) $\theta = 0, \pi, 2\pi$ *Notice that $(0 \le \theta \le 2\pi)$ has a less than/equals sign for 2π , so include the 2π .

3) $\theta = \pi$ **4)** $\theta = \frac{5\pi}{4}, \frac{7\pi}{4}$ **5)** $\theta = 0, \pi, 2\pi$ **6)** $\csc \theta = undefined$ whenever $\frac{1}{\sin \theta}$ is undefined. $\sin \theta = 0$ when $\theta = 0, \pi, 2\pi$ **7)** $\theta = \frac{3\pi}{4}, \frac{7\pi}{4}$ $\theta = \frac{\pi}{3} \pm n(2\pi)$ $\theta = \frac{5\pi}{3} \pm n(2\pi)$ 8) **9)** $\theta = \frac{\pi}{2} \pm n\pi$ *Note the combined general solution, since both angles where $\cos \theta = 0$ are separated by π 10) $\theta = \frac{7\pi}{6} \pm n(2\pi)$ $\theta = \frac{11\pi}{6} \pm n(2\pi)$ $\theta = \frac{\pi}{6} \pm n(2\pi)$ $\theta = \frac{11\pi}{6} \pm n(2\pi)$ 11)

12)
$$\theta = \frac{\pi}{4} \pm n(2\pi)$$
$$\theta = \frac{7\pi}{4} \pm n(2\pi)$$

13) $\tan \theta = undefined$ when $\frac{\sin \theta}{\cos \theta}$ is undefined, and this happens when the denominator is zero $\theta = \frac{\pi}{2} \pm n\pi$ is the solution to $\cos \theta = 0$ **14)** $\cot \theta = 0$ whenever $\frac{\cos \theta}{\sin \theta}$ is zero, and this happens when the numerator is zero.

 $\theta = \frac{\pi}{2} \pm n\pi$ is the solution to $\cos \theta = 0$

$$15) \ \theta = \frac{\pi}{4} \pm n\pi$$

$$\mathbf{16)} \ \theta = \frac{3\pi}{4} \pm n\pi$$

www.puremath30.com

Ε

Trigonometry Lesson Two

Part III – Graphically Solving Equations

In the last section, all the solutions could be found on the unit circle. Now we will look at equations involving solutions not on the unit circle.

Example 1: Find the angles where $\sin\theta = -0.4235$, $(0 \le \theta \le 360^\circ)$

To solve this, we graph in the TI-83 (use *degree* mode):

When the domain is in degrees, the answer should be in degrees also.

When the domain is in radians, the answer should be in radians also.

Use $2^{nd} \rightarrow$ Trace \rightarrow Intersect to find the points of intersection of the two lines.

The *x*-coordinates will give you the angles that solve the equation.

 $\theta = 205^{\circ}$ and 335°

Example 2: Find the angles where $\cos\theta = \frac{\sqrt{5}}{7}$, $(0 \le \theta \le 2\pi)$

When the domain is given in radians, the answer should be in radians too. To solve this, we graph in the TI-83 (*use radian* mode):

Trigonometry Lesson Two

Part III - Graphically Solving Equations

aanaanaanaanaanaanaanaanaanaanaanaa Solve the following equations for the domain $0^{\circ} \le x \le 360^{\circ}$ *In some of the graphs, you will see vertical lines. These represent asymptotes, and do not contribute to the solution. Don't try to obtain intersection points at asymptotes. 1) $\cos x = -0.1288$ 2) $\sin x = 0.5$ 3) $\tan x = -1$ 4) sec x = -1.33425) $\cot x = 2$ 6) $\csc x = 3.4219$ 7) tan *x* = -0.5397 8) $\cos x = 0.3994$ 9) sec x = 110) $\sin x = -0.4398$ Solve the following equations for the domain $0 \le x \le 2\pi$ 11) $\cos x = -$ The following answers are in radians. 12) $\tan x = 0$ **11**) $\frac{\pi}{6}, \frac{11\pi}{6}$ 13) $\sin x = 2$ Answers: 14) $\cot x = 0.1123$ **12)** $0, \pi, 2\pi$ 13) Undefined The following answers 15) $\csc x = 0.5$ 14) 1.46 & 4.60 are in degrees. 15) Undefined 16) sec x = -1**16**) π 1) 97.4 & 262.6 17) $\sin x = -0.5$ **17**) $\frac{7\pi}{6}, \frac{11\pi}{6}$ 2) 30 & 150 **3**) 135 & 315

PURE MATH 30: EXPLAINED

9) 0 & 360

4) 138.5 & 221.5

5) 26.6 & 206.6

7) 151.6 & 331.6

10) 206.1 & 333.9

8) 66.5 & 293.5

6) 17 & 163

18) $\tan x = 1.7321$

19) $\cos x = -0.7071$

20) $\cot x = -1$

www.puremath30.com

18) $\frac{\pi}{3}, \frac{4\pi}{3}$

19) $\frac{3\pi}{4}, \frac{5\pi}{4}$

20) $\frac{3\pi}{4}, \frac{7\pi}{4}$